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The medial prefrontal cortex, especially the dorsal anterior cingulate cortex (ACC), has long been implicated in
cognitive control and error processing. Although the association between ACC and behavior has been established,
it is less clear how ACC contributes to dysfunctional behavior such as substance dependence. Evidence from neu-
roimaging studies investigating ACC function in substance users ismixed, with some studies showing disengage-
ment of ACC in substance dependent individuals (SDs), while others show increased ACC activity related to
substance use. In this study, we investigate ACC function in SDs and healthy individuals performing a change sig-
nal task for monetary rewards. Using a priori predictions derived from a recent computational model of ACC, we
find that ACC activity differs between SDs and controls in factors related to reward salience and risk aversion be-
tween SDs and healthy individuals. Quantitative fits of a computational model to fMRI data reveal significant dif-
ferences in bestfit parameters for reward salience and risk preferences. Specifically, the ACC in SDs shows greater
risk aversion, defined as concavity in the utility function, and greater attention to rewards relative to reward
omission. Furthermore, across participants risk aversion and reward salience are positively correlated. The results
clarify the role that ACC plays in both the reduced sensitivity to omitted rewards and greater reward valuation in
SDs. Clinical implications of applying computational modeling in psychiatry are also discussed.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The medial prefrontal cortex (mPFC), especially the dorsal anterior
cingulate cortex (ACC), is recognized as a key brain region involved in
cognitive control and decision making. The region focused on here in-
cludes the rostral cingulate zone of Picard & Strick (2001) and extends
dorsally and caudally into the pre-SMA (Nee et al., 2011). Neuroimaging
studies have explored multiple hypotheses to explain the involvement
of ACC in monitoring goal-directed behaviors, including conflict moni-
toring (Botvinick et al., 1999), error detection (Brown and Braver,
2005), allocation of attention resources (Carter et al., 1998; Whalen
et al., 1998), action–outcome evaluation (Alexander and Brown, 2011;
Gehring and Willoughby, 2002; Hyman et al., 2013; Kennerley et al.,
2006), predicting task difficulty (Brown and Braver, 2005), and
updating predictions of expected cognitive demands (Sheth et al.,
2012). Specifically, the ACC is known to play a key role in decisionmak-
ing (Botvinick et al., 1999; Carter et al., 2000; Gehring and Knight, 2000;
Li et al., 2010; Paulus and Frank, 2006). Depending on the decisionmak-
ing paradigms, the ACC has shown to be a critical signal in evaluating
l & Brain Sciences, 1101 E 10th
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the perceptions of risk and predicted reward (Alexander and Brown,
2010), the anticipation of risk (Fukui et al., 2005; Krawitz et al., 2010),
driving loss avoidance (Fukunaga et al., 2012; Magno et al., 2006), as
well as learning the likely consequences of risky behavior (Brown and
Braver, 2005; Brown and Braver, 2007).

1.1. ACC deficits and risk-taking behaviors: competing hypotheses

Disturbances in mPFC/ACC functioning are widely believed to con-
tribute to deficits in top-down cognitive control processes across amul-
titude of psychiatric disorders (Carter et al., 1997; Drevets et al., 1997;
Gehring et al., 2000; Schmidtke et al., 1998; Shin et al., 2001; Yucel
et al., 2003). Addictions research, in particular, has widely reported def-
icits in cognitive control to be associated with negative outcomes for
substance dependent individuals (SDs), including decreased perfor-
mance on tasks thought to involve the prefrontal cortex (Bolla et al.,
2001; Fishbein et al., 2005; Gowin et al., 2014; Hester et al., 2009;
Hester and Garavan, 2004; Kaufman et al., 2003), poor treatment out-
comes (Charlet et al., 2014; Steele et al., 2014), treatment compliance
(Streeter et al., 2008), as well as an increased likelihood of relapse
(Clark et al., 2014; Marhe et al., 2013; Paulus et al., 2005; Stewart
et al., 2014). Recent work also has shown ACC dysregulation during
reward-seeking behavior to be associated with excessive alcohol
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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consumption, as seen in the Balloon Analog Risk Task (Bogg et al., 2012).
These findings are consistent with neuroimaging and modeling work
showing ACC as learning the likelihood of an error in a change signal
task (Brown and Braver, 2005) as well as the potential consequences
of risky behavior (Brown and Braver, 2007; Brown and Braver, 2008;
Jahn et al., 2011). Thus, disengagement of the ACC may contribute to
risky behaviors that may include substance use (Fukunaga et al., 2013).

Conversely, increased ACC activity has also been associated with
substance dependence in some circumstances. A wealth of evidence in-
dicates that substance-related cues reliably engage ACC for SDs during
cue-induced craving (Childress et al., 1999; Garavan et al., 2000;
Goldstein et al., 2007b; Heidbreder, 2011; Maas et al., 1998), even
after periods of non-substance use (Ciccocioppo et al., 2001). In some
cases, increased ACC activity related to cognitive control was observed
for SDs, in tasks with drug-cue distractors (Luijten et al., 2011; O3Leary
et al., 2000), which can be interpreted as the need for increased control
in order to perform a behavioral task. Greater control may be needed,
for example, to overcome salient distractors (Botvinick et al., 2001), or
to compensate for decreased efficiency of processing (Poldrack, 2015).
Drugs with a high potential for dependence tend to engage the dopami-
nergic system, and result in strong activation of ACC (Breiter et al., 1997;
O3Leary et al., 2000), which is densely innervated by midbrain dopa-
mine neurons (Oades and Halliday, 1987). Thus, greater ACC activity
may also result from abnormally high dopaminergic reinforcement sig-
nals (Redish, 2004).

Together, these competing findings put forth two potential and pos-
sibly related factors underlying ACC involvement in substance depen-
dence. First, the risk-seeking hypothesis suggests that substance-
dependence related disengagement of ACC in cognitive control tasks
may contribute to a lack of sufficient inhibitory control needed to pre-
vent automatic or habitual behaviors related to substance use, resulting
in responses that increase risk. Second, the reward salience hypothesis,
suggests that increased reward salience of substance use and
substance-related cues may co-opt control processes such that behav-
iors related to substance dependence become subjectively more valu-
able. This is a critical distinction from risky behavior in that, rather
than implying a lack of control, it implies over-engagement of control
processes related to acquiring and using a substance. As a whole, the
above literature also suggests an alteration of cognitive control process-
es in SDs in which attentional bias effects (Field and Cox, 2008; Hester
et al., 2006; Hester and Garavan, 2009) lead to ACC over-activation
when SDs process drug-related tasks, but at the cost of impaired pro-
cessing of non-drug related tasks.
1.2. Applying computational models of ACC in substance dependence

Despite the acknowledged link between ACC function and behavior,
neuroscientific research has thus far failed to converge on the exact role
of ACC function in supporting behavior related to substance depen-
dence. This lack of clarity regarding ACC involvement in substance de-
pendence may partially be a result of uncertainty surrounding ACC
function itself. As noted above, ACC has variously been implicated in a
number of different functions, includingmonitoring and processing be-
havioral error (Gehring et al., 1990), detecting behavioral conflict
(Botvinick et al., 2001), tracking environmental volatility (Behrens
et al., 2007), predicting the likelihood of error (Brown and Braver,
2005), learning the value of actions (Rudebeck et al., 2008; Walton
et al., 2004), and many more. A recent computational model of ACC
(Alexander and Brown, 2011) recasts the role of the region as learning
to predict the likely consequences of an action, regardless of affective
valence, and signaling when an expected outcome fails to occur. The
predicted response–outcome (PRO) model comprehensively accounts
for a wide range of data from fMRI, EEG, and single-unit neurophysiolo-
gy studies involving ACC under a single unifying framework (Alexander
and Brown, 2011).
Using the PRO model, we attempt to distinguish between the two
general hypotheses described above regarding the influence of sub-
stance dependence on ACC activity in a cognitive control task. First,
we formalize the risk-seeking and reward salience hypotheses using
concepts from the judgment and decision-making literature. Specifical-
ly, we adopt the notion of risk frequently deployed in the context of
decision-making under uncertainty in which risk-aversion and risk-
seeking reflect the degree of concavity or convexity, respectively, of a
utility function. This definition of risk-aversion is distinct from other
possible meanings of risk-aversion, under which risk may be defined
as the probability of loss, the uncertainty or variance surrounding a pro-
spective outcome, or the tendency to engage in behaviors that may re-
sult in harmful outcomes (Krawitz et al., 2010). We address these
various alternate definitions of risk in greater detail in the discussion.

Next, using simulations of the PRO model performing a cognitive
control task, we derive a priori predictions regarding the activity of
ACC while manipulating model parameters associated with reward sa-
lience and risk-seeking. Based on these simulations, detailed below,
we expect that under the risk-seeking hypothesis, ACC activity related
to reward magnitude and error likelihood will be higher in substance
dependent individuals (SDs) relative to control participants, while
under the reward salience hypothesis, ACC activity for SDswill be great-
er for increased reward magnitude and lower for increased error likeli-
hood. We then test these predictions using fMRI to record brain activity
in SDs and non-substance dependent individuals (non-SDs) while
performing an Incentive Change Signal Task (ICST). Lastly, in a second
set of model-based analyses, we fit the PRO model to observed fMRI
data by estimating the best-fit reward salience and risk parameters on
a per-subject basis in order to identify differences between SDs and
non-SDs in attention to reward or risk attitudes.

2. Methods

Recruiting and experimental procedures were approved by the
Indiana University Bloomington Institutional Review Board. Several
components of the methods have been reported in our previous study
(Alexander and Brown, 2010).

2.1. Participants

A total of 49 subjects took part in the present study and provided
written informed consent. All subjects were required to be at least
18 years of age, right-handed, and to meet standard health and safety
requirements, including no history of neurological problems or claus-
trophobia, weigh less than 440 lbs, and have no metallic implants, for
entry into the magnetic resonance imaging scanner. They were paid
$25/h for participation, plus performance bonuses (see below) averag-
ing approximately $6.70.

2.1.1. Non-substance-dependent (non-SD) control group
Non-SD subjects (n= 24) were initially recruited for an earlier ver-

sion of this study, and the results have been published previously
(Alexander and Brown, 2010). Here we use the same data to compare
against the SD participants. The non-SD participants are therefore rep-
resentative of the general population with a relatively low rate of sub-
stance dependence; however, the original study did not explicitly
exclude for current or past alcohol abuse or other substance abuse or
dependence. By contrast, all subjects in the SD group were subject to a
separate exclusion criteria to ensure that they met the criteria for sub-
stance dependence. We further address the potential limitation of the
differing screening procedures in the Discussion section. The control
subjects were run between late July and late October of 2007.

2.1.2. Substance-dependent (SD) group
SD subjects (n = 25) were recruited using advertisements placed

around campus and the Bloomington community (see Finn et al.
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(2009) for specifics about the recruitment strategy). The initial inclusion
criteria for the SD group required participants to meet additional eligi-
bility requirements: (a) be between the ages of 18–30 years, (b) be
able to read and speak English (whether as a native or second lan-
guage), (c) have at least a sixth grade level of education, (d) have con-
sumed alcohol, (e) have no reports of suffering from any serious head
injuries, (f) have no major cognitive impairments and; (g) have no his-
tory of psychotic symptoms.

Individuals who met this preliminary criteria were administered a
diagnostic interview, using the Semi-Structural Assessment for the Ge-
netics of Alcoholism (SSAGA) (Bucholz et al., 1994) to ascertain diagno-
ses for substance use disorders using DSM-IV diagnostic criteria
(American Psychiatric Association, 2000). The SSAGA is an extensively
used diagnostic interview designed to ascertain diagnoses within the
DSM system (DSM-III and DSM-IV), the ICD-10 system, as well as the
RDC system. The SSAGA was administered by senior doctoral students
in Clinical Psychology and supervised by a licensed clinical psychologist.

All SD subjects met DSM-IV criteria for either: (a) alcohol depen-
dence and no drug abuse (n = 3); (b) marijuana dependence and no
polydrug abuse (n = 7); (c) marijuana or other drug dependence
(apart from alcohol) and polydrug abuse (n = 15). In this mixed
group, participants met for separate diagnoses for both marijuana de-
pendence, as well as dependence for a separate drug type. Some of the
subjects in (b) and (c) also met DSM-IV criteria for alcohol dependence.
Due to the relatively low numbers of individuals reported for each sub-
group, subjects were combined during the analysis, enabling the maxi-
mization of statistical power. All SD participants were asked to refrain
from using either alcohol or drugs for at least 12 h prior to their sched-
uled fMRI session. The SD subjects were run over a 10-month period be-
tween mid-April 2008 and mid-February 2009. Both control and
substance dependent subjects were run in the same facility and at sim-
ilar times of day, and during overlapping months of the year.

It is important to note that the SD subjects were recruited from the
general population and were not currently in treatment for substance
dependence. Apart from current marijuana, alcohol, or tobacco depen-
dence, all substance dependence is past rather than current. Subjects
were allowed to smoke prior to the session if they desired. We did not
breathalyze or urine screen the subjects, but anyone who showed
signs of current intoxication was not scanned. None of our alcohol de-
pendent subjects were experiencing classic withdrawal symptoms,
and our assessments revealed furthermore that the alcohol dependent
subjects had never experienced classic withdrawal symptoms. The rea-
son is that our subjects were relatively young and were therefore early
in their careers in alcohol dependence, where symptoms and drinking
levels wax and wane. None of the subjects drank to intoxication every
day, and many did not drink at all some days. Thus, alcohol-
dependent subjects were generally not experiencingwithdrawal symp-
toms during the scan session.

With regard to the polydrug subgroup, each participant met the
criteria for a varying number of drug types and severity (abuse versus
dependence) unless otherwise specified, the drug type indicated is as-
sumed to have been met for dependence: Participant 1 (Alcohol, Mari-
juana, Stimulant, Nicotine, Hallucinogen (abuse)); Participant 2
(Marijuana, Stimulant, Nicotine, Opioid); Participant 3 (Alcohol, Mari-
juana, Stimulant, Sedative (abuse)); Participant 4 (Alcohol (abuse),
Stimulant, Opioid); Participant 5 (Alcohol (abuse), Marijuana, Nicotine,
Hallucinogen (abuse)); Participant 6 (Marijuana, Stimulant, Nicotine,
Hallucinogen, Opioid (abuse), Sedative (abuse)); Participant 7 (Alcohol;
Marijuana, Opioid (abuse), Sedative); Participant 8 (Alcohol, Marijuana,
Stimulant (abuse)); Participant 9 (Alcohol, Marijuana, Nicotine, Opi-
oid); Participant 10 (Alcohol, Marijuana, Stimulant, Opioid, Hallucino-
gen (all abuse)); Participant 11 (Alcohol (abuse), Marijuana,
Stimulant, Opioid, Nicotine); Participant 12 (Alcohol, Marijuana, Stimu-
lant); Participant 13 (Alcohol (abuse), Marijuana, Stimulant (abuse),
Nicotine); Participant 14 (Alcohol (abuse), Marijuana, Stimulant) and
Participant 15 (Alcohol, Marijuana, Nicotine).
While the control group was not explicitly screened to exclude drug
dependent individuals, we assessed self-reports of smoking (smoker
status and cigarettes per day) and binge drinking in all subjects. Alcohol
consumption self-reports were collected in the course of administering
the domain specific inventory of risk-taking (DOSPERT) (Weber et al.,
2002), with the question of how likely the subject is to drink heavily
at a social function. Responses were on a Likert scale of 1–5, with 5
meaning very likely. For smoking, controls were significantly less likely
to smoke (4 controls, 16 SD, p b 0.02, Fisher exact test). For drinking,
controlswere significantly less likely to drink than SD subjects (controls
mean = 2.64; SD mean = 4.18; t(45) = 4.40, p b 0.00007, two tail).
Across the general subject population, alcohol use disorders occur in
15–22% of subjects (Blanco et al., 2008; Slutske, 2005; Wu et al.,
2007), while drug use disorders occur in 5–7% of subjects (Blanco
et al., 2008). Overall, while the rates of alcohol and drug use disorders
are likely not zero in the control group, they are significantly lower
than in the SD group.

2.2. Design and procedure

2.2.1. Behavioral task
The Incentive Change Signal Task (ICST) (Brown and Braver, 2007) is

a modified version of the change signal task (Brown and Braver, 2005)
and was implemented in E-Prime (Psychology Software Tools, Pitts-
burgh, PA). The ICST consisted of four phases: color cue, target, re-
sponse, and feedback (see Fig. 1). At the beginning of each trial two
horizontal dashes were displayed in the center of the screen. Dashes
were one of four colors: white, brown, yellow, or light blue. Each color
was paired with one of the four possible combinations of error likeli-
hood (high and low) and average reward magnitude (high and low).
These pairings were counterbalanced across all participants, and the
pairings were constant across all trials for an individual participant. Tri-
als were presented pseudo-randomly. After the dashes were displayed
for 1000 ms, an angle brace appeared to the right or left of the dashes,
forming an arrow pointing either left or right (48 pt font). The direction
of the arrow indicated which response the participant was to make, ei-
ther with the left or right index finger. On change signal trials (1/3 of all
trials), an additional arrow (96 pt font) appeared above the first arrow
and pointing in the opposite direction, indicating that the participant
was to cancel the initial response and make a response according to
the second arrow. The stimuli remained visible for 1000ms after the ap-
pearance of the first arrow. The change signal delay (CSD) between the
onset of the initial arrow and the second arrow was adjusted by an
asymmetric stairstep algorithm to maintain target error rates, and the
CSD was adjusted independently for each of the four colors. For the
low error likelihood (EL) conditions, the CSD was adjusted to achieve
an error rate of 5% on change signal trials, while an error rate of 50%
was maintained for the high error likelihood conditions. Subjects were
not informed beforehand that the CSD would be adjusted in this way.
On each change trial, the CSDwas increased for a correct trial, while in-
correct trials decreased the CSD. After presentation of the stimuli and
expiration of the response deadline, the screen was blank for 500 ms,
after which visual feedback was provided to the participants for
1000 ms. For correct trials, feedback consisted of the word ‘Correct’
and 4 digits indicating how many points the participant earned for the
trial. For incorrect trials, participants saw the word ‘Incorrect’ in addi-
tion to the number of points earned. The number of points earned on
each trial depended both on the outcome (correct or incorrect) of the
trial as well as the average reward magnitude (RM) condition. For the
high RM condition, subjects earned 2000 pt for a correct trial and
1000 pt for an incorrect trial, while in the low RM condition subjects
earned 1000 pt for a correct trial and 0 pt for an incorrect trial. Partici-
pants were informed that their points were to be converted directly to
a cash payment at the end of the session. Points were converted at the
rate of 1000 pt for each US $0.01. Participants were not informed of
the conversion rate of points to dollars prior to participation, nor were



Fig. 1.Change signal task andmodel predictions. In the change signal task (A), participants are presentedwith an initial cue indicating a response to bemade. On a subset of trials, a second
cue is presented after a variable delay, indicating that the subject should cancel the initial response and instead make the alternate response. The color of the cue implicitly indicates the
likelihood of error (2 levels) and rewardmagnitude (2 levels). Simulations of the PROmodel Bwere used to generate a priori predictions of individual differences in ACC activity related to
reward salience and aversion to risk. As sensitivity to reward (indicated by the parameter λ, cf. Fig. 2) increases, error likelihood effects attenuatewhile rewardmagnitude effects increase.
As risk-aversion (γ, cf. Fig. 2) increases, both error likelihood effects and effects of reward magnitude increase.
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they given direct information regarding their accumulated point total.
We found in pilot studies that subjects performed with greater motiva-
tion for large amounts of points, with conversion factors revealed after
the session, than for the equivalent relatively small monetary payment.
After feedback, the screen remained black for a minimum of 1500 ms
until the start of the next trial. Intertrial intervals (ITIs) were jittered
by adding 0, 2000, 4000, or 6000 ms (3 TRs) to the ITI. Jitter delays
were chosen by aweighted random selection of each of the possible du-
rations; the weights for each of the jitter durationswere 30, 12, 5 and 2,
respectively, allowing for efficient estimation of the hemodynamic re-
sponse function (HRF) (Burock et al., 1998).

Participants performed 6 blocks of 82 trials per block in the scanner.
Participants were trained on the task prior to scanning in order to famil-
iarize themwith the task instructions, but not the specific reward mag-
nitude and error likelihood conditions. Training typically consisted of
fewer than the 82 trials comprising a single block. Subjects learned the
payoff amounts and probabilities associated with each color cue condi-
tion solely by experience while performing the task in the scanner, as in
previous studies (Brown and Braver, 2005; Brown and Braver, 2007).
Differences in BOLD signals due to effects of reward magnitude and
error likelihood are therefore the result of experiencewith the task dur-
ing scanning, and not previous training.

In the task design, reward magnitude was manipulated by adding
1000 pt to the outcomes such that a correct response in the high reward
magnitude condition was worth 1000 pt more than a correct response
in the low reward magnitude condition, and, similarly, an error was
worth 1000 pt more in the high reward magnitude condition than in
the low rewardmagnitude condition. Average reward is commonly cal-
culated as the sum of the probability of each potential outcome multi-
plied by the value of that outcome. In the current task, manipulation
of error likelihood necessarily affects the actual expected value of each
condition. In high error likelihood conditions, a participant is more like-
ly to commit an error, leading to a lower average reward than in the low
error likelihood condition. Critically, however, changes in average re-
ward are the same across conditions: the difference between the
average reward (high RM and low RM) in the low error likelihood con-
ditions is the same as the difference in the high error likelihood condi-
tion (Fig. 1). Thus, we can independently manipulate error likelihood
and reward magnitude.

We used the domain specific inventory of risk-taking (DOSPERT
(Weber et al., 2002)), to assess the likelihood of an individual engaging
in risky behaviors in 5 domains: financial decisions (investing and gam-
bling were measured separately), ethical choices, health/safety, social
interaction, and recreation. Most pertinent to our analysis were two
specific domains, financial decisions and health/safety risk taking, and
thus the remaining domains were not considered in this current analy-
sis. We used the 40-item DOSPERT questionnaire, which consisted of
questions, for example, inquiring about the likelihood of an individual
“drink[ing] heavily at a social function,” “engaging in unprotected
sex,” “betting a day3s income at high-stake poker game,” and “gambling
a week3s income at a casino” (Weber et al., 2002).
2.3. fMRI analysis

2.3.1. Imaging acquisition and preprocessing
Functional images were collected on a Siemens Magnetom Trio at

3.0 Tesla MRI scanner at the Imaging Research Facility of the Indiana
University Bloomington Campus. Functional image slices were tilted
30° toward the coronal plane from the AC–PC line for whole-
brain coverage (EPI, 33 slices, 3 mm slice thickness, TR = 2000 ms,
TE = 25, flip angle = 70, FOV = 220 × 220 mm, 64 × 64 voxel in-
plane resolution, voxel size = 3.4375 mm by 3.4375 mm by
3 mm = 35.4492 mm3). T1-weighted structural images for each
participant also were acquired at the end of each session using
three-dimensional MP-RAGE imaging (160 sagittal slices, 1 mm
slice thickness, TR = 2300 ms, TE = 3.93, flip angle = 12, pixel
width inplane = 0.5 mm).

Preprocessing was done using SPM5 (Wellcome Trust Centre for
Neuroimaging, 2005) except where otherwise specified. Functional
data were spike-corrected on a voxel-by-voxel basis to reduce the im-
pact of artifacts using AFNI3s 3dDespike. The structural scan was skull-
stripped using FSL3s BET2 with default parameters (Péchaud et al.,
2006). The functional images were slice-timing corrected using sinc-
interpolation (Oppenheim et al., 1999), motion corrected by means
of a least-squares 6-parameter rigid-body transformation, and
coregistered with the structural scan. Once the structural scan was nor-
malized to the SPM MNI template, the normalized images were
smoothed with an 8 mm3 FWHM isotropic Gaussian kernel.

2.3.2. Intrasubject analysis
Event-related responses were estimated using a general linear

model approach and analyses conducted using SPM5 and the Marsbar
(Brett et al., 2002) toolkit for ROI analyses. A general linear model
(GLM) was estimated for each subject using a total of 17 regressors: a
constant term, 6 regressors for movement, and 10 regressors for exper-
imental conditions. Eight regressors were used to model correct trials
for all combinations of levels of high vs. low reward magnitude, high
vs. low error likelihood, and change vs. go trials (e.g., trials in which a
change signal was either presented or not presented). Events were
time-locked to the onset of each trial (appearance of angle brace indi-
cating which response the subject should make) and were modeled as
having duration of 0 s (as is standard in SPM). Error trials weremodeled
by two regressors, one for errors made for change trials, and another for
errors committed when no change signal was presented or when no re-
sponse was made. Beta values for model regressors were estimated
using the SPM canonical HRF.

2.3.3. Group analysis
Analyses for main effects, interactions, and pairwise comparisons

were done at the 2nd-level (random effects), and performed only for
correct go trials at the whole-brain level. Planned analyses included
tests for differences in error likelihood effects (correct/go/high EL −
correct/go/low EL) and differences in effects of reward magnitude (cor-
rect/go/high RM− correct/go/low RM) between groups (Controls–SD).
These contrasts provide for direct tests of our a priori predictions, as de-
rived below from the computational modeling. The threshold for voxels
to be included in cluster-level significance testing was set to p b 0.01.
This threshold is more liberal than the threshold of p b 0.001 recom-
mended by Woo et al. (2014). However, we note that this threshold
was determined using whole brain analyses in which large clusters of
voxels crossing functional or anatomical boundaries may be formed by
chance. Given that our analyses are informed by a prioripredictions spe-
cifically regardingACC, and that analyses pertaining to these predictions
are restricted to ACC, the possibility that clusters identified in these
analyses as being significant due to trans-region cluster formation is re-
duced, and thus a more liberal threshold is warranted. In order to rule
out the possibility that the results reported below were the result of
using a predefined anatomical ROI in conjunction with a more liberal
cluster threshold, we also conducted whole brain analyses using the
more typical cluster threshold of 0.001. Except where noted, regions
of interest for additional analyses were selected by the peak area of ac-
tivation for clusters of activation that passed familywise error (FWE)
cluster correction for our planned analyses.

2.4. Computational methods

2.4.1. Generating model predictions
In the Introduction section, we outlined two possible accounts for

behavior related to substance dependence, namely that SDs may have
increased attention to rewarding outcomes versus aversive outcomes,
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or that SDsmay have reduced risk aversion relative to non-SDs. Herewe
derive predictions regarding ACC activity for the ICST using the PRO
model of ACC (Alexander and Brown, 2011). The PROmodel learns pre-
dictions of the likely outcomes of actions. In the ICST, there are four ac-
tion/outcome conjunctions: Go/Correct, Go/Error, Change/Correct, &
Change/Error. In previous simulations, it was assumed that the occur-
rence of an outcome was a binary event— either the outcome occurred
or it did not. In order to simulate effects of reward magnitude,
potentially modulated by risk attitudes or reward sensitivity, we
model outcomes as continuous numbers on the interval [0,1] using an
exponential utility function (Fig. 2 (Pratt, 1964)) of the following form
for correct trials:

U correct trialsð Þ ¼ λ�

1−e−γx if γN0
x

2000 if γ¼0

eγx if γb0:

8>>>><
>>>>:

Here x is the total points received by a subject for a correct trial
(2000 in High RM trials, 1000 in Low RM trials), and γ is a utility param-
eter reflecting risk-attitude. For γ N 0, the utility function is concave,
reflecting risk-aversion, while for γ b 0 the utility function is convex,
reflecting risk-seeking. In this latter case, U was rescaled such that it
fell between 0 and 1 by dividing U by max(U). Finally, λ represents
the balance between sensitivity to reward and reward omission. For
λ = 1 the utility function attends only to gains while reward omission
(described below) is ignored. Conversely, forλ=0, rewards are ignored
and only omission of reward influences learning in themodel. Error tri-
als were modeled as the difference in utility of the total number of
points possible on a trial and the total number of points actually re-
ceived (1000 in High RM trials, 0 in Low RM trials):

U error trialsð Þ ¼ 1−λð Þ �

1−e−γx winð Þ� �
− 1−e−γx actualð Þ� �

if γN0

x winð Þ−x actualð Þ
2000

if γ ¼ 0

eγx winð Þ−eγx actualð Þ if γb0:

8>>>>>>>><
>>>>>>>>:

We simulated the PRO model on the ICST task while parametrically
varying λ (keeping γ constant at 0, indicating indifference to risk) and
γ (keeping λ constant at 0.5, indicating equal sensitivity to reward
and reward omission) in order to derive predictions regarding ACC ac-
tivity (Fig. 1B). All other parameters were identical to those previously
reported (Alexander and Brown, 2011).

A total of 4 response–outcome (RO) conjunctions are simulated,
representing the possible actions available to the model (Go and
Fig. 2. Example of utility functions as related to risk preferences.
Change) and the possible feedback as a result of selecting an action
(Correct and Incorrect), as in previous model simulations (Alexander
and Brown, 2011). Single units in the model represent each of the pos-
sible RO conjunctions and constitute a feedback signal allowing the
model to learn to predict likely outcomes. Whereas outcomes were
modeled as binary events in the original simulations of the PRO
model, here outcomesweremodeled as the numerical value for the util-
ity function parameterized by λ andγ. Thus, when themodel responded
correctly to a change signal, the level of activity for the unit in themodel
signaling a Change/Correct conjunction was set to the value computed
from the above utility functions. Only 1 feedback unit was active for
each trial.

Model-derived predictions for between group differences for RM ef-
fects (High RM− Low RM) and EL effects (High EL− Low EL) are sum-
marized in the right panels of Fig. 1B. Our two principal hypotheses, that
SDs may be either more risk-seeking or more sensitive to reward rela-
tive to our control group can be differentiated by EL effects: under the
risk-seeking hypothesis, SDs should show greater EL effects than con-
trols, while under the reward salience hypothesis, SDs should show
weaker EL effects than controls. For completeness, we also considered
possible scenarios in which SDs were more risk averse than controls,
as well as more sensitive to reward omission.

In order to derive model predictions, it was assumed in our simula-
tions that non-substance dependent controlswould be equally sensitive
to reward and reward omission (λ=0.5), and neutral in their risk atti-
tudes (γ = 0). These assumptions are likely invalid, as even in healthy
populations, individuals tend to be risk averse and more sensitive to
losses than gains (Kahneman and Tversky, 1979). We examine the va-
lidity of these assumptions by fitting the model to individual activation
patterns (described below).
2.4.2. Model fitting
In a second line of analyses, we fit the activity of the PRO model to

fMRI data from individual subjects, as well as group data, in order to es-
timate parameters λ and γ of the utility functions described above.
Quantitative model fits of fMRI data present a number of methodologi-
cal challenges (Ashby andWaldschmidt, 2008). A common approach to
model-based fMRI analysis is to train a computational model on the se-
quence of events observed by a subject and to regress the resulting
model activity against fMRI data (Jahn et al., 2014; O3Doherty et al.,
2003) in order to identify voxels that correlate well with the predictions
of the model.

Our approach is similar in that our goal is to correlate model activity
with observed fMRI activity. However, rather than trying to identify
voxels that correlate with model activity for a given model parameteri-
zation (often derived from fits to behavioral data), our aim is to find the
model parameterization that reproduces the observed pattern of activ-
ity within a selected set of voxels.

Accordingly, we identify a cluster in dACC showing significantly
greater error likelihood effects in controls relative to SD, namely for
the contrast ((Control/HEL − Control/LEL) − (SD/HEL − SD/LEL)).
Note that by selecting this region on the basis of the between-groups
comparison of EL effects, we introduce a potential bias into the model
fit. Specifically, of the hypothesized influences on ACC activity outlined
in Fig. 1B, two of them, increased risk aversion and increased reward sa-
lience in SDs, are compatiblewith the between-groups EL effectswe ob-
serve in our data, and therefore the model fit is biased to recover
parameter values consistent with either increased reward salience or
increased risk aversion. However, we note that the direction of
between-groups RM effects is different for these two hypotheses: in-
creased reward salience results in larger RM effects, while increased
risk aversion results in decreased RM effects (Fig. 1B). It is therefore
not specified by fitting the model to fMRI data from the ROI chosen
based on between-groups EL effects which parameter estimate will dif-
fer between groups. That is, even though the model fit will be biased to
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find either that the risk-aversion parameter or the reward salience pa-
rameter is greater for SDs relative to controls, the fit is agnostic with re-
gard to which of those parameters underlie the observed between-
groups EL effects. It is possible that reward salience alone is responsible
for group differences, in which case estimates for the risk-aversion pa-
rameter may not differ between SDs and controls. Alternatively, risk-
aversion alone may underlie group differences, while estimates for re-
wards salience may not differ between groups. By fitting the model to
regions showing between group differences in EL effects, our goal is
twofold: first, to elaborate on the relationship between reward salience
and risk preferenceswithin ACC, and second, to investigate our assump-
tions of risk-neutrality and reward omission indifference in our control
group.

Using MarsBar (Brett et al., 2002), we calculated the percent signal
change for each subject in this region for all RM and EL conditions for
only Go/Correct trials. For each subject, we fit the PROmodel to the dif-
ference in percent signal change for all pairwise comparisons as well as
the main effects of RM and EL. The model was trained on the sequence
of trials and outcomes observed by that subject, andmodel activity was
calculated as the difference between prediction and outcome (i.e. nega-
tive surprise (Alexander and Brown, 2011)) for the first 0.5 s of the trial,
averaged over all trials for each condition. Free parameters in themodel
were the degree of risk-aversion/risk-seeking (λ), reward/omission
sensitivity (γ), and a scaling factor. This last parameter had no influence
on the pattern of activity predicted by the model, and was included in
order to give fMRI and model activity the same (arbitrary) units.

As noted in the section describing recruitment and screening of par-
ticipants,members of the control groupwere not explicitly screened for
substance dependence, leading to the possibility that our control group
is contaminated by individuals with undiagnosed substance depen-
dence. Generally, the use of a contaminated control group will lead to
an increase in type II errors due to the dependent variable for contami-
nated individuals in the control group beingmore similar to the popula-
tion of interest than the legitimate controls. Nevertheless, we cannot
conclusively state, based on the values of the dependent variables (in
this case, estimatedmodel parameters), which of our control group par-
ticipants may have qualified for a diagnosis of substance dependence
and, consequently, should have been excluded from the study; it is pos-
sible that undiagnosed SD individuals in the control group are
contributing to any observed differences between estimated model pa-
rameters for each group. In order to address this weakness of the study,
we conducted a permutation test on the estimated model parameters
for each group using the rate of dependence on alcohol and other sub-
stance in the population to inform our estimate of the likely number
of participants in the control group with substance dependence.
Table 1
Data are represented as means plus/minus standard errors.

Non-

(N =

% 48.9
Age 22.5
Gender Female 13

Male 11
Education (level) Graduate school 7

Standard college 7
High school graduate 7
Other 3

Substance use history
Alcohol dependence only a

Marijuana dependence only a

Drug dependence/polydrug abuse a

DOSPERT likelihood scoresb

Gambling 6.00
Health & safety risk-taking 20.4
Drinking heavily 2.64

a Detailed substance use histories not obtained for the non-SD group (see the Limitations an
b Self-report questionnaires were not available for one subject in the SD group.
The permutation test was conducted in two steps. First, we calculat-
ed the probability of a single person being dependent based on the fre-
quency observed in the populations of 15–22% and 5–7% for alcohol and
other substances, respectively. This probability was calculated using the
maximum of the range reported for each group as follows:

P SDð Þ ¼ P ADð Þ þ P ODð Þ ‐ P ADð ÞP ODð Þ

Here AD indicates alcohol dependence andOD indicates dependence
on another substance. Using the maximum frequencies, this gives a
probability of a random individual being substance dependent of
0.2746. Second, probability that our control group of 24 subjects con-
tains n substance-dependent individuals is given by the binomial
distribution:

P X ¼ nð Þ ¼ 24
n

� �
pn 1−pð Þ24−n:

In the second step, for each possible value of n, we conducted t-tests
between estimated model parameters for the SD group and a control
group inwhich n participantswere excluded. The identity of the exclud-
ed participants was permuted for each value of n such that all possible
combinations were tested. For example, in the case of n=1 (indicating
a single contaminated control participant), there are 24 possible permu-
tations, while for the case of n = 12, there are 2,704,156 possible per-
mutations. For each value of n, the probability of rejecting the null
hypothesis was calculated as the number of times the null hypothesis
was rejected over the total number of permutations for that value of n.
Finally, we calculated the probability of rejecting the null hypothesis
overall as the sum over n of the probability of rejecting the null hypoth-
esis for a given value of n times the probability of n having that value:

P H0≠H1ð Þ ¼ ∑nP H0≠H1 njð ÞP X ¼ nð Þ :

3. Results

3.1. Group demographics

Demographic characteristics of the two groups are given in Table 1.
Pearson3s chi-square tests showed no significant differences between
the non-SD and SD groups in terms of age, gender, socioeconomic status
(SES; based on father3s level of education), ethnicity, and race.
SD group SD group Analysis

24) (N = 25) χ2 p

51.0
4 ± 0.80 21.76 ± 0.44

12 0.19 0.67
13
6 1.48 0.69
5
13
1

3
7
15

8.00 b0.04
4 24.58 b0.005

4.18 b0.00007

d future questions section for more details).



Fig. 3. A) Within ACC, greater error likelihood effects were observed for the non-substance dependent (non-SD) compared to the substance dependent (SD) group, consistent with the
hypothesis that SD individuals are more sensitive to reward and inconsistent with the hypothesis that SD participants exhibit increased risk-seeking. B) Within the region showing in-
creased EL effects for controls, a cluster was identified showing enhanced RM effects for non-SD versus SD groups, inconsistent with both the reward sensitivity and risk-seeking hypoth-
eses. C) Percent signal change plotted for non-SD and SD individuals for the 4 EL/RM conditions for Go/Correct trials only. D) RM and EL effects for SDs, controls, and the between-groups
differences. Both RM and EL effects are larger for controls than for SDs, consistent with model predictions suggesting that SDs are more risk averse than non-substance dependent indi-
viduals (cf. Fig. 1B).
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3.1.1. Behavioral results
A 4-way ANOVA (RM × EL × GROUP × TIME) indicated no main ef-

fect of either RM condition (F(3,777) = 0.25, p = 0.621) nor EL condi-
tion (F(3,777) = 1.6, p = 0.206) on RTs in Go/Correct trials. To
investigate potential learning effects, trials were separated into 4 bins
based on trial number (i.e. trials during each quarter of the experiment
were included in the same bin); however, nomain effect of trial number
on RTwas observed (F(3,777)= 0.17, p=0.92). However, RTs for con-
trols (mean = 729.88 ms, standard deviation = 55.81 ms) and RTs for
SDs (mean= 750.86 ms, standard deviation = 64.48 ms) were signifi-
cantly different (F(3,777)=22.67, p b 0.001), ACC activity has previous-
ly been observed to correlate with reaction time (Carp et al., 2010;
Grinband et al., 2011), suggesting that differences in mean ACC activity
betweengroups across all Go/Correct trialsmaybe related to differences
in RT. In the present study, however, our planned fMRI analyses exam-
ine between group differences in the RM and EL effects. Any differences
in the BOLD signal observed for these analyseswould not be expected to
correlate with between-group differences in RT, but might be related to
within-group RT differences. A 2-way ANOVAwas conducted to test for
a main effect of RM or EL on RT within each group. We found no signif-
icant effect of RM (F(1,93)= 0.23, p=0.63) nor EL (F(1,93)= 0.2, p=
0.66) on RT for controls. Similarly, no significant effect of RM (F(1,97)=
0.11, p= 0.74) nor EL (F(1,97) = 0, p= 0.96) was observed for the SD
group. Observed error rates for both control (50.34%, HEL; 9.0%, LEL)
and SD (49.63%, HEL; 6.92%, LEL) groups were consistent with target
rates, and while not significant (F(1,95) = 3.1, p = 0.081), a trend to-
ward lower error rates in SDs was observed.

At first glance, it may seem puzzling that the task manipulations did
not lead to effects on RT or error rate. In fact this is consistent with ear-
lier studies of the change signal task, where RT effects and error rate
effects were either absent or very minimal (Brown and Braver, 2005,
2007). This is due to the fact that the change signal task requires sub-
jects to respond in a very narrow time window, so speeding up or
slowing downwill lead to greater errors. This works against differences
in RT. Likewise, the change signal task strongly controls error rates. If
subjects increase their accuracy, then the change signal task will in-
crease the change signal delay, which makes it more difficult for sub-
jects to respond correctly. In this way, the change signal task controls
error rates to the specific target error rate, and so differences across con-
ditions are not expected.

3.2. fMRI results

In Fig. 1B, we show effects of RM and EL predicted by the PROmodel
for our two hypotheses that SDs are more sensitive to reward (bottom
panels) or that SDs are more risk-seeking (top panels). Briefly, the
PRO model suggests that if SDs are more reward sensitive than non-
substance dependent controls, SDs should show increased effects of re-
wardmagnitude and decreased effects of error likelihood relative to con-
trols. In contrast, if increased risk-seeking underlies ACC activity in SDs,
effects of both reward magnitude and error likelihood should increase
relative to non-substance dependent individuals. In order to test the hy-
pothesis that enhanced reward salience underlies differences in ACC ac-
tivity in SD3s as compared to non-substance dependent controls, we
looked first at the between-groups differences in the error likelihood ef-
fect ((Control/HEL − Control/LEL)− (SD/HEL − SD/LEL)). Because the
PRO model makes strong a priori predictions regarding activity specifi-
cally within ACC, we restrict this contrast to an anatomically defined
ROI for Brodmann areas 24 & 32 (WFUPickAtlas, dilation = 2). Consis-
tent with the reward salience hypothesis, and inconsistent with the
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risk-seeking hypothesis, the contrast identifies a region within ACC
(Fig. 3A) showing greater effects of error likelihood in non-SDs versus
SDs (peak voxel, MNI: −2, 0, 50, cluster level p b 0.001, k =
377 voxels/1336.4 mm3). Specifically, Fig. 3C shows that in this region,
controls show reduced activation in the low error likelihood condition,
for both high and low reward magnitude conditions. Overall activity
in this regionwas greater in the SDs. Next, in order to test the prediction
that effects of reward magnitude will be enhanced for SDs vs. Controls,
we performed an ROI analysis using the region identified in our previ-
ous analysis using the contrast ((SD/HRM − SD/LRM) − (Control/
HRM− Control/LRM)). Because error likelihood and rewardmagnitude
are orthogonal in our design, this analysis is unbiased. This analysis re-
vealed no significantly different voxels within the region. Instead, the
inverse contrast ((Control/HRM − Control/LRM) − (SD/HRM − SD/
LRM)) identified a significant cluster of voxels (Fig. 3B; peak voxel,
MNI: 0, 2, 46, cluster level p = 0.023, k = 67 voxels/237.5 mm3), sug-
gesting that rewardmagnitude effects within this region are attenuated
for SDs. Interestingly, this pattern of results, (Fig. 3C) is consistent with
themodel-derived hypothesis that increased risk-aversion underlies dif-
ferences in ACC activity for SDs. Specifically, themodel predicts (Fig. 1B,
upper right frame) that control subjects should show both enhanced
RM and EL effects in ACC relative to SDs only if the degree of risk aver-
sion for SDs is higher. This qualitative pattern is indeed observed in
our sample (Fig. 3D).

We additionally carried out the analyses described immediately
above using a more conventional, whole-brain approach with a cluster
threshold of 0.001.While the results of this set of analyses were attenu-
ated due to themore stringent threshold, they nevertheless reproduced
the salient results. The contrast investigating between-groups differ-
ences in EL effects yielded a significant cluster with a peak activation
slightly dorsal and lateral to the peak reported in the anatomically-
constrained analysis (peak voxel, MNI: −2, −2, 56, cluster level p =
0.007, k=101 voxels). Using this cluster as an ROI, we then investigat-
ed group differences in RM effects, identifying a single significant voxel
that nevertheless passed cluster level correction (MNI: 0, 0, 46, cluster
level p = 0.049, k = 1 voxel).

In order to assess whether differences in ACC activity between the
two groups were driven primarily by differences in reward salience or
differences in risk attitudes, we fit PRO model activity for each subject
to the percent signal change (Fig. 4) in the region identified using the
between-groups EL contrast. At the group level, parameter estimates
for both reward/omission salience (λ) and risk attitudes (γ)were signif-
icantly different between SDs and non-SDs, indicating that SDs are both
Fig. 4. Best fit parameters for the PRO model fit to individual data. Parameters found for
SDs (open circles) were significantly more reward sensitive as well as significantly more
risk-averse than parameters obtained for controls (crosses). Across all subjects, aversion
to risk was positively correlated with reward sensitivity.
more sensitive to reward (higher mean estimated λ; t(47) = 3.54,
p b 0.001) and more risk-averse (higher mean estimated γ; t(47) =
3.76, p b 0.001) as compared to controls. There were no significant dif-
ferences between groups for the scaling parameter (t(47) = .299,
p = 0.766). Across all subjects, parameter estimates for risk-aversion
and reward salience were significantly, positively correlated (Fig. 4;
r = 0.556, p b 0.001), indicating that increases in sensitivity to reward
were associated with increased risk aversion. The scaling parameter
was not correlated with either risk aversion (r=0.06, p=0.682) or re-
ward salience (r = 0.180, p = 0.215) across all subjects.

In order to test our assumptions of risk-neutrality and reward/omis-
sion indifference in our control group, we conducted t-tests between
the parameters estimated for our control subjects for reward/omission
salience (λ) and risk attitudes (γ) and the values used to derive our a
priorimodel predictions (Fig. 1B).We find that both assumptions are vi-
olated. Estimated reward/omission salience parameters were signifi-
cantly greater than 0.5 (t(23) = 3.133, p = 0.0047), indicating that
control subjects were more sensitive to reward omission than reward.
Estimated risk attitude preferences were significantly greater than 0
(t(23) = 2.507, p = 0.0197), indicating that control subjects were risk
averse. Although the assumptions of our a priori model simulations
were violated, this does not necessarily indicate that the predictions
themselves were invalid. The direction of the predicted EL and RM ef-
fects for the various hypotheses outlined in Fig. 1B is relative to the con-
trol group, and although the magnitude of the between groups
differences in effects may change depending on the particular risk pref-
erences and reward sensitivity of the control group, the direction of
those effects is preserved.

Fits of the model to fMRI data reveal substantial heterogeneity in
SDs, suggesting that differences in RM and EL effects between SDs and
the control group may be driven primarily by one of the SD subgroups
(see Table 1). We investigated this possibility by conducting one-way
ANOVAs for the RM and EL effects in SDs only, with the 3 subgroups
as themain factor. These analyses were conducted using the ROI identi-
fied by the Control–SD contrast for effects of error likelihood, as de-
scribed above, and the threshold for significance was set at p = 0.01
uncorrected. No effect of groupwas observed for the EL ANOVA. Howev-
er, for the RM analysis, a single voxel was identified (MNI: −6, 8, 42,
p = 0.007 uncorrected). Pairwise t-tests between groups showed that
this group difference was driven primarily by the alcohol-only sub-
group. For both the comparison between the alcohol-only dependent
group vs. the marijuana-only group, a cluster of voxels (peak voxel
MNI: −2, 2, 42, p = 0.004 uncorrected, cluster extent = 8; cluster sig-
nificance p = 0.217 correct) was observed. A similar cluster was ob-
served for the comparison between the alcohol-only group and the
polydrug-dependent group (peak voxel MNI:−6, 8 ,42; p = 0.001 un-
corrected; cluster extent = 14; cluster significance p = 0.156
corrected). Neither cluster passed significance, rendering these findings
tenuous at best. Due to the nature of the process used to recruit
substance-dependent subjects, this study is inadequate to investigate
differences in activity related to choice of substance.

Because our control group was selected randomly from the popula-
tion without screening for substance dependence, it is possible that the
between-groups differences observed in our model-fit parameters are
driven, in part, by undiagnosed substance-dependent individuals. In
order to assess this possibility, we conducted a permutation test in
which individuals were excluded from the control group. Note that
this is a fairly conservative test in that we assumed any individual
may be substance dependent regardless of the value of the dependent
variables (model parameters) that are assumed to be related to sub-
stance dependence. The permutation test yielded a probability of
rejecting the null hypothesis of no between-group differences of
0.9994 for the risk parameter γ, and 0.9915 for the reward salience pa-
rameter λ. In other words, if we had screened out undiagnosed
substance-dependent individuals from the control group, the probabil-
ity that we would no longer find the observed effects is p b 0.001 for γ,
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and p b 0.01 for parameter λ. This suggests that contamination of the
control group is not responsible for the differences observed in our
model parameters.

3.3. fMRI and behavior relationships

The above results show how participants differ in the brain activity
parameters recovered from the model, but the next question is how
these differences relate to behavior. The change signal task does not di-
rectly measure participants3 decision preferences or corresponding be-
havioral utility function. To address this question, we analyzed data
from the DOSPERT (Weber et al., 2002). We specifically looked at self-
reported risk-taking likelihood for gambling (as reported in our earlier
work (Brown and Braver, 2007)), and also health and safety risk-
taking likelihood, which includes substance use. With the DOSPERT,
we found that relative to controls, SDs were more likely to gamble
(p b 0.04) and take health and safety risks (p b 0.005). This is consistent
with the reduced reward omission parameters derived from the ACC
model fits in SDs relative to controls.

With regard to risk aversion, we further correlated the DOSPERT
health and safety risk-taking likelihood across all subjects with the
model risk aversion parameter derived from the ACC, and we found a
trending positive correlation (r = .22, p = 0.07). While just shy of sta-
tistical significance, this is consistent with greater risk aversion model
parameters in those more likely to use substances. It is important to
note here that risky behavior and risk aversion entail different concepts,
despite the shared use of the word “risk” (Krawitz et al., 2010). The
model risk aversion parameter refers specifically to the concavity of
the utility function used in model decision-making, with greater risk
aversion corresponding to less willingness to pursue higher-valued
but less certain options. This concept of risk-taking behavior involves
decisions that may lead to negative consequences. Indeed, previous
work has noted that individuals whose estimated utility function has a
high degree of concavity (where concavity is synonymouswith aversion
to risk in the judgment and decision-making literature) may engage in
impulsive behaviors relative to individuals with less concave utility
functions (Anderhub, Güth, Gneezy and Sonsino, 2001; Andersen,
Harrison, Lau and Rutström, 2008; Apesteguia and Ballester, 2014;
Keren and Roelofsma, 1995; Pine et al., 2009). Thus, it is not a contradic-
tion to note that higher risk aversion (utility function concavity) corre-
lates with higher risk taking behaviors (decisions with greater
potentially negative consequences). This can be the case if higher utility
function concavity means that smaller payouts are valued more highly,
so participants would be more willing to pursue them relative to
controls.

4. Discussion

In this study, we tested two hypotheses, derived from a computa-
tional model of ACC, regarding differences in ACC activity between
substance-dependent (SD) and non-substance dependent (non-SD)
users. Using classical fMRI analyses, we found a region in dACC showing
that effects of both rewardmagnitude and error likelihood are attenuat-
ed in SDs relative to the non-SD individuals. Somewhat surprisingly, this
finding suggests that differences in ACC activity in SDs could be attribut-
ed to increased risk aversion relative to the non-SD individuals. In a sec-
ond set of model-based analyses, we fit activity from a computational
model of ACC to fMRI data from individual subjects, in order to estimate
parameters indicating reward salience and risk attitudes. In these anal-
yses, we find that ACC activity in SDs is best explained as a combination
of both increased reward salience, as well as increased risk-aversion.

Characterizing SDs as being risk-averse, as opposed to risk-seeking,
seems quite paradoxical considering that substance use itself is general-
ly considered a risky behavior. However, the concept of risk aversion as
we use it in this study is common in the judgment and decision-making
literature (Tversky and Kahneman, 1992). The degree to which an
individual is risk-averse is reflected by how quickly a utility function,
representing the subjective value of a monetary reward, saturates; the
utility function for highly risk-averse individuals rapidly approaches
an upper bound for relatively small rewards. Fig. 2 shows that the
“risk averse” (concave value function) subjects actually over-weight
smaller rewards. In other words, even small rewards are more salient
and valuable to the “risk averse” subjects than to the subjects with a
more convex value function. By implication, in “risk averse” subjects,
larger rewards carry less additional utility relative to small rewards. In
this way, those who show a concave value function may be more in-
clined to value and pursue even small rewards such as immediately
available drugs, as larger rewards may not be deemed worth the addi-
tional effort that may be required. This yields a consistent account of
SD behavior. The over-weighting of smaller rewards in SDs also leads
to a novel prediction: those with more concave value functions should
also show greater sensitivity to reward. Fig. 4 shows that the SDs do
show both greater sensitivity to reward and greater value function con-
cavity (risk aversion), and the two are positively correlated. In this way,
the model provides a coherent account of SD behavior, with consistent
empirical results, in terms of over-weighting of small reward values.

Previous literature is consistent with these findings and provides a
delineation of different kinds of risk. In agreement with our findings, a
previous study investigating how SD value monetary rewards finds
that substance users weigh intermediate and large rewards approxi-
mately equally (Goldstein et al., 2007a), consistent with a rapidly satu-
rating utility function. The definition of risk as “utility function
concavity” differs from the health psychology risk defined as “decisions
thatmay lead to harmful outcomes”, or even from the finance definition
of risk as “greater variance in the outcome distribution” (Krawitz et al.,
2010). These concepts from the existing literature must be distin-
guished carefully to avoid confusion and seemingly contradictory uses
of the word risk. Here, most SDs weremore sensitive to reward than re-
ward omission (i.e. greater reward-seeking and reduced sensitivity to
reward omission); they showed more risky behavior (in the health
sense of risk, i.e. using alcohol and drugs), and they showed more risk
aversion in the sense of utility function concavity. Our results do not di-
rectly address risk preferences in the sense of preferring greater or less-
er variance in the outcome distribution. It is possible for SDs to be less
risk averse in the sense of a less concave utility function, while also
exhibiting more reward-seeking and decreased sensitivity to reward
omission. These consist of the SDs plotted in the upper left quadrant
of Fig. 4. Still, SDs as a whole showedmore risk aversion (utility func-
tion concavity) relative to controls. Overall, these results and the
general increase in activity in SDs shown in Fig. 3 are consistent
with the reward salience hypothesis as discussed in the Introduction
section, i.e. that substance dependence is not merely a product of
risky behavior but rather depends on specific alterations in reward
valuation.

How does increased risk-aversion contribute to the qualitative dif-
ferences observed between SD and non-SD individuals in this study?
The PROmodel learns predictions of likely response–outcome conjunc-
tions, regardless of affective valence. However, this does not preclude
the possibility that affectively valenced events may bias predictions
learned by the PRO model due to relative differences in the salience of
affectively positive and negative events. In the ICST, four RO
conjunctions were possible (Go/Correct, Go/Error, Change/Correct, and
Change/Error), and the relative salience of each of these outcomes was
modeled as the utility of the total number of points received (in the
case of correct outcomes), or the difference in utility between the total
number of points possible on a trial and the actual points received (for
error trials). In the case of High Reward Magnitude trials, subjects re-
ceived points even for incorrect responses. In the case of a highly risk-
averse subject, the subjective utility of receiving 1000 points is approx-
imately the same as the utility of receiving 2000 points. Consequently,
when a risk-averse subject commits an error on an HRM trial, the sa-
lience of that event is negligible, leading to decreased predictive activity
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on HRM trials, especially in the HEL condition in which errors are
frequent.

Perhaps less controversial is our finding that, for SDs, the pattern of
activity we observed in ACC reflects, in part, increased sensitivity to re-
wards versus reward omission, while the reverse is true for non-SD in-
dividuals. This is consistent with prior findings of reduced punishment
sensitivity in SDs at the neural (Brown and Braver, 2008; Fukunaga
et al., 2013) and behavioral levels (Yechiam et al., 2005). Our findings
of increased reward omission salience in the non-SD group are, to the
extent that the omission of a reward can be considered a loss, consistent
with the well-known phenomenon that “losses loom larger than gains”
(Kahneman and Tversky, 1979), and further suggest that inattention to
potential aversive outcomes may contribute to maladaptive decision
making in SD individuals. Notably, our classical analyses failed to find
evidence of increased activity in ACC associated with increased reward
magnitude in the SD group as predicted by the PROmodel.We attribute
this to the interaction of risk-aversion and reward salience; parameter
estimates for reward salience and risk-aversion from our model-based
analysis were strongly correlated across all subjects, as well as within
each group, suggesting that a common mechanism may underlie both
increased risk-aversion and enhanced reward salience.

4.1. Limitations and future questions

One of the limitations of our study concerns participant recruitment,
which may have led us to slightly underestimate the magnitude of the
effects reported above. Specifically, our control participants were re-
cruited from the general population for an earlier study (Alexander
and Brown, 2010). They were not explicitly screened to rule out those
with substance dependence, so a small percentage may have substance
use disorders. If we had screened themout, then the control and SDpar-
ticipants may have been even more different from each other, which
would likely have led to larger effect sizes in the effects we observed
above. Nevertheless, we showed that the SD participants were signifi-
cantly more likely to smoke and drink heavily relative to controls.
Also, we have shown with a permutation analysis that the between
group differences we observed would be unlikely to change if we had
a purely non-SD control group (p b 0.01).

We also acknowledge that our findings may be limited by the het-
erogeneous nature of our mixed SD group, as these participants are
known to use various types of drugs. On the other hand, our findings
are in line with current movements to conceive of diagnoses on more
of a dimensional scale, where particular domains and constructs are
not definitive (e.g., withdrawal versus no withdrawal). Although our
findings suggest that activity in ACC reflects an interaction between re-
ward salience and risk aversion, it remains an open question as to
whether ACC itself is responsible for biasing processing of information
related to reward delivery versus omission, or whether such biases are
introduced prior to cingulate involvement. SDs exhibit bias both in at-
tention and decision-making (Field and Cox, 2008; Hester et al., 2006;
Hester et al., 2009). In the PRO model, ACC is regarded as a region in-
volved in learning predictions of likely outcomes regardless of affective-
ly valenced events such as gain or loss. However, this does not preclude
the possibility that inputs to ACCmay themselves be biased based on af-
fective information in a way that varies with individual differences
(Brown and Braver, 2008). In either case, the ACCmay impose an atten-
tional bias, as the rapidly saturating utility function and greater reward
sensitivity in SDs may combine to increase the salience of rewarding
cues, especially drugs.

The dopaminergic system, long associated with reinforcement and
reward (Schultz et al., 2000), is a likely source of biases related to re-
ward salience. Input to ACC from midbrain dopamine (DA) neurons
reflecting the value of an event may modulate value-free input to ACC
coding for the objective category of an event, thusweightingpredictions
acquired by ACC regarding likely outcomes. Similarly, a promising can-
didate as a source for biases related to risk-aversion is the serotonergic
system. ACC is heavily innervated by neurons in dorsal raphe (Lidov
et al., 1980), and, computationally, a number of potential roles for sero-
tonin (5-HT) related to judgment and decision making have been sug-
gested. It has been variously proposed that 5-HT reflects impulsivity
(Daw and Doya, 2006), temporal discounting (Doya, 2007), prediction
of long-term punishment (Daw et al., 2002), as well as aversion to risk
(Krichmar, 2008). Furthermore, the DA and 5-HT systems are thought
to interact with one another, both at a computational level (Daw et al.,
2002), as well as anatomically through overlapping projection targets
(Brown and Molliver, 2000; Lidov et al., 1980; Oades and Halliday,
1987), consistent with our finding of a correlation between reward sa-
lience and risk-aversion parameters.

More generally, this study contributes to the growing body of litera-
ture in the area of computational psychiatry (Maia and Frank, 2011;
Montague et al., 2012). In brief, the goal of computational psychiatry
is to apply quantitative, model-based approaches to identify psycholog-
ical or neural variables that contribute to psychopathology and behav-
ioral disorders. In this respect, our study offers a novel contribution to
this effort through associating ACC activity in SD individuals with en-
hanced reward processing/attenuated processing of reward omission
and increased risk aversion. Although it has previously been hypothe-
sized that increased reward salience, potentially mediated by DA,
might underlie substance dependence, to the best of our knowledge
this is the first work linking substance use with risk aversion.While ad-
ditional studies are needed to confirm this link, this study supports the
growingmovement to apply computational modeling as a tool for mak-
ing differential diagnoses and subgroup detection characterized by
varying disease processes (Stephan and Mathys, 2014), thus moving
from a symptom-based to amoremechanism-based disorder classifica-
tion underlying specific dysfunctions of neurocognitive systems
(Goschke, 2014).
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